高一数学知识点总结_圆与方程知识点

从零开始

从零开始

2020-06-30

高一数学怎么学?首先应做好课前的物质准备和精神准备,以使得上课时不至于出现书、本等物丢三落四的现象;今天小编在这给大家整理了高一数学知识点总结,接下来随着小编一起来看看吧!

高一数学知识点总结(一)

圆的方程

1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

2、圆的方程

(1)标准方程,

圆心,半径为r;

(2)一般方程

当时,方程表示圆,此时圆心为,半径为

当时,表示一个点;当时,方程不表示任何图形。

(3)求圆方程的方法:

一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,

若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

3、直线与圆的位置关系:

直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断:

(1)设直线,圆,圆心到l的距离为,则有;;

(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】

(3)过圆上一点的切线方程:

①圆x2+y2=r2,圆上一点为(x0,y0),则过此点的切线方程为(课本命题).

②圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2(课本命题的推广).

4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

设圆,

两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

当时两圆外离,此时有公切线四条;

当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;

当时两圆相交,连心线垂直平分公共弦,有两条外公切线;

当时,两圆内切,连心线经过切点,只有一条公切线;

当时,两圆内含;当时,为同心圆。

高一数学知识点总结(二)

直线、圆的位置关系

由直线与圆的公共点的个数,得出以下直线和圆的三种位置关系:

(1)相交:直线与圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线.

(2)相切:直线和圆有公共点时,叫做直线和圆相切.这时直线叫做圆的切线,的公共点叫做切点.

(3)相离:直线和圆没有公共点时,叫做直线和圆相离.

直线与圆的位置关系的数量特征

1、迁移:点与圆的位置关系

(1)点P在⊙O内dr.

2、归纳概括:

如果⊙O的半径为r,圆心O到直线l的距离为d,那么

(1)直线l和⊙O相交dr.

练习题:

1.直线L上的一点到圆心的距离等于⊙O的半径,则L与⊙O的位置关系是()

A.相离

B.相切

C.相交

D.相切或相交

2.圆的的弦长为12cm,如果直线与圆相交,且直线与圆心的距离为d,那么()

A.d<6cm

B.6cm

C.d≥6cm

D.d>12cm

3.P是⊙O外一点,PA、PB切⊙O于点A、B,Q是优弧AB上的一点,设∠APB=α,∠AQB=β,则α与β的关系是()

A.α=β

B.α+β=90°

C.α+2β=180°

D.2α+β=180°

4.在⊙O中,弦AB和CD相交于点P,若PA=4,PB=7,CD=12,则以PC、PD的长为根的一元二次方程为()

A.x2+12x+28=0

B.x2-12x+28=0

C.x2-11x+12=0

D.x2+11x+12=0

高一数学知识点总结(三)

空间直角坐标系

空间直角坐标系定义:

过定点O,作三条互相垂直的数轴,它们都以O为原点且一般具有相同的长度单位、这三条轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴);统称坐标轴、通常把x轴和y轴配置在水平面上,而z轴则是铅垂线;它们的正方向要符合右手规则,即以右手握住z轴,当右手的四指从正向x轴以π/2角度转向正向y轴时,大拇指的指向就是z轴的正向,这样的三条坐标轴就组成了一个空间直角坐标系,点O叫做坐标原点。

1、右手直角坐标系

①右手直角坐标系的建立规则:x轴、y轴、z轴互相垂直,分别指向右手的拇指、食指、中指;

②已知点的坐标P(x,y,z)作点的方法与步骤(路径法):

沿x轴正方向(x>0时)或负方向(x<0时)移动|x|个单位,再沿y轴正方向(y>0时)或负方向(y<0时)移动|y|个单位,最后沿x轴正方向(z>0时)或负方向(z<>

③已知点的位置求坐标的方法:

过P作三个平面分别与x轴、y轴、z轴垂直于A,B,C,点A,B,C在x轴、y轴、z轴的坐标分别是a,b,c则(a,b,c)就是点P的坐标。

2、在x轴上的点分别可以表示为(a,0,0),(0,b,0),(0,0,c)。

在坐标平面xOy,xOz,yOz内的点分别可以表示为(a,b,0),(a,0,c),(0,b,c)。

3、点P(a,b,c)关于x轴的对称点的坐标为(a,-b,-c);

点P(a,b,c)关于y轴的对称点的坐标为(-a,b,-c);

点P(a,b,c)关于z轴的对称点的坐标为(-a,-b,c);

点P(a,b,c)关于坐标平面xOy的对称点为(a,b,-c);

点P(a,b,c)关于坐标平面xOz的对称点为(a,-b,c);

点P(a,b,c)关于坐标平面yOz的对称点为(-a,b,c);

点P(a,b,c)关于原点的对称点(-a,-b,-c)。

4、已知空间两点P(x1,y1,z1),Q(x2,y2,z2),则线段PQ的中点坐标为

5、空间两点间的距离公式

已知空间两点P(x1,y1,z1),Q(x2,y2,z2),则两点的距离为特殊点A(x,y,z)到原点O的距离为

6、以C(x0,y0,z0)为球心,r为半径的球面方程为

特殊地,以原点为球心,r为半径的球面方程为x2+y2+z2=r2

练习题:

选择题:

1.在空间直角坐标系中,已知点P(x,y,z),给出下列4条叙述:①点P关于x轴的对称点的坐标是(x,-y,z)②点P关于yOz平面的对称点的坐标是(x,-y,-z)③点P关于y轴的对称点的坐标是(x,-y,z)④点P关于原点的对称点的坐标是(-x,-y,-z)其中正确的个数是()

A.3B.2C.1D.0

2.若已知A(1,1,1),B(-3,-3,-3),则线段AB的长为()

A.43

B.23

C.42

D.32

3.已知A(1,2,3),B(3,3,m),C(0,-1,0),D(2,―1,―1),则()

A.|AB|>|CD|

B.|AB|<|CD|C.|AB|≤|CD|

D.|AB|≥|CD|

4.设A(3,3,1),B(1,0,5),C(0,1,0),AB的中点M,则|CM|?()

A.5

B.2

C.3

D.4

高一数学知识点总结(四)

《圆与方程》知识点整理

一、标准方程

?x?a?2??y?b??r 22

1.求标准方程的方法——关键是求出圆心?a,b?和半径r

①待定系数:往往已知圆上三点坐标,例如教材P119例2 ②利用平面几何性质

往往涉及到直线与圆的位置关系,特别是:相切和相交 相切:利用到圆心与切点的连线垂直直线

相交:利用到点到直线的距离公式及垂径定理

2.特殊位置的圆的标准方程设法(无需记,关键能理解) 条件 方程形式 圆心在原点 x?y?r?r?0? 222过原点?x?a???y?b??a2?b2?a2?b2?0? 圆心在x轴上 ?x?a??y?r22222?r

?r?0? ?0? 圆心在y轴上 x??y?b??r222

圆心在x轴上且过原点 ?x?a??y?a222?a?0?

?b?0?

2圆心在y轴上且过原点 x??y?b??b2222与x轴相切 ?x?a???y?b??b

222?b?0? ?a?0? 与y轴相切 ?x?a???y?b??a

与两坐标轴都相切 ?x?a???y?b??a

二、一般方程

x?y?Dx?Ey?F?0?D?E?4F?0? 22222222?a?b?0?

1.Ax?By?Cxy?Dx?Ey?F?0表示圆方程则??

?A=B≠0?A=B≠0

??

C=0???C=0

??D2+E2-4AF>022

?DEF?????>0 ?+ ?-4??AAA?????

2.求圆的一般方程一般可采用待定系数法:如教材P122例r4 3.D2+E2-4F>0常可用来求有关参数的范围 三、点与圆的位置关系

1.判断方法:点到圆心的距离d与半径r的大小关系

dr?点在圆外

2.涉及最值:

(1)圆外一点B,圆上一动点P,讨论PB的最值

PBPB

=BN=BC-r =BM=BC+r

min

max

(2)圆内一点A,圆上一动点P,讨论PA的最值

Pmin= Pm

ax

A=A=

rr C C

=

思考:过此A点作最短的弦?(此弦垂直AC) 四、直线与圆的位置关系

1.判断方法(d为圆心到直线的距离)

(1)相离?没有公共点??<0?d>r

(2)相切?只有一个公共点??=0?d=r

(3)相交?有两个公共点??>0?d这一知识点可以出如此题型:告诉你直线与圆相交让你求有关参数的范围. 2.直线与圆相切 (1)知识要点①基本图形

高一数学知识点总结(五)

《圆与圆的方程》随堂练习

一、选择题

1.(2009?湖北荆州质检二)过点P(1,2),且方向向量v=(-1,1)的直线的方程为

(  )

A.x-y-3=0       B.x+y+3=0

C.x+y-3=0 D.x-y+3=0

答案:C

解析:方向向量为v=(-1,1),则直线的斜率为-1,直线方程为y-2=-(x-1)即x+y-3=0,故选C.

2.(2009?重庆市高三联合诊断性考试)将直线l1:y=2x绕原点逆时针旋转60°得直线l2,则直线l2到直线l3:x+2y-3=0的角为(  )

A.30°    B.60°    C.120°    D.150°

答案:A

解析:记直线l1的斜率为k1,直线l3的斜率为k3,注意到k1k3=-1,l1⊥l3,依题意画出示意图,结合图形分析可知,直线l2到直线l3的角是30°,选A.

3.(2009?东城3月)设A、B为x轴上两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程x-y+1=0,则直线PB的方程为(  )

A.2x+y-7=0 B.2x-y-1=0

C.x-2y+4=0 D.x+y-5=0

答案:D

解析:因kPA=1,则kPB=-1,又A(-1,0),点P的横坐标为2,则B(5,0),直线PB的方程为x+y-5=0,故选D.

4.过两点(-1,1)和(0,3)的直线在x轴上的截距为 (  )

A.-32 B.32 C.3 D.-3

答案:A

解析:由两点式,得y-31-3=x-0-1-0,

即2x-y+3=0,令y=0,得x=-32,

即在x轴上的截距为-32.

5.直线x+a2y+6=0和(a-2)x+3ay+2a=0无公共点,则a的值是 (  )

A.3 B.0 C.-1 D.0或-1

答案:D

解析:当a=0时,两直线方程分别为x+6=0和x=0,显然无公共点;当a≠0时,-1a2=-a-23a,∴a=-1或a=3.而当a=3时,两直线重合,∴a=0或-1.

6.两直线2x-my+4=0和2mx+3y-6=0的交点在第二象限,则m的取值范围是

(  )

A.-32≤m≤2 B.-32

C.-32≤m<2 D.-32

答案:B

解析:由2x-my+4=0,2mx+3y-6=0,解得两直线的交点坐标为(3m-6m2+3,4m+6m2+3),由交点在第二象限知横坐标为负、纵坐标为正,故3m-6m2+3<0且4m+6m2+3>0?-32

7.(2009?福建,9)在平面直角坐标系中,若不等式组x+y-1≥0,x-1≤0,ax-y+1≥0,(a为常数)所表示的平面区域的面积等于2,则a的值为(  )

A.-5 B.1 C.2 D.3

答案:D

解析:不等式组x+y-1≥0,x-1≤0,ax-y+1≥0所围成的区域如图所示.

∵其面积为2,∴|AC|=4,

∴C的坐标为(1,4),代入ax-y+1=0,

得a=3.故选D.

8.(2009?陕西,4)过原点且倾斜角为60°的直线被圆x2+y2-4y=0所截得的弦长为

(  )

A.3 B.2 C.6 D.23

答案:D

解析:∵直线的方程为y=3x,圆心为(0,2),半径r=2.

由点到直线的距离公式得弦心距等于1,从而所求弦长等于222-12=23.故选D.

9.(2009?西城4月,6)与直线x-y-4=0和圆x2+y2+2x-2y=0都相切的半径最小的圆的方程是 (  )

A.(x+1)2+(y+1)2=2 B.(x+1)2+(y+1)2=4

C.(x-1)2+(y+1)2=2 D.(x-1)2+(y+1)=4

答案:C

解析:圆x2+y2+2x-2y=0的圆心为(-1,1),半径为2,过圆心(-1,1)与直线x-y-4=0垂直的直线方程为x+y=0,所求的圆的圆心在此直线上,排除A、B,圆心(-1,1)到直线x-y-4=0的距离为62=32,则所求的圆的半径为2,故选C.

10.(2009?安阳,6)已知直线x+y=a与圆x2+y2=4交于A、B两点,且|OA→+OB→|=|OA→-OB→|,其中O为原点,则实数a的值为(  )

A.2 B.-2C.2或-2 D.6或-6

答案:C

解析:由|OA→+OB→|=|OA→-OB→|得|OA→+OB→|2=|OA→-OB→|2,OA→?OB→=0,OA→⊥OB→,三角形AOB为等腰直角三角形,圆心到直线的距离为2,即|a|2=2,a=±2,故选C.

11.(2009?河南实验中学3月)若直线l:ax+by=1与圆C:x2+y2=1有两个不同交点,则点P(a,b)与圆C的位置关系是 (  )

A.点在圆上 B.点在圆内C.点在圆外 D.不能确定

答案:C

解析:直线l:ax+by=1与圆C:x2+y2=1有两个不同交点,则1a2+b2<1,a2+b2>1,点P(a,b)在圆C外部,故选C.

12.(2010?保定市高三摸底考试)从原点向圆x2+(y-6)2=4作两条切线,则这两条切线夹角的大小为 (  )

A.π6 B.π2C.arccos79 D.arcsin229

答案:C

解析:如图,sin∠AOB=26=13,cos∠BOC=cos2∠AOB=1-2sin2∠AOB=1-29=79,∴∠BOC=arccos79,故选C.

第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,请将答案填在题中的横线上。)

13.(2010?湖南长沙一中)已知直线l1:ax+y+2a=0,直线l2:ax-y+3a=0.若l1⊥l2,则a=________.

答案:±1

解析:∵l1⊥l2,∴kl1?kl2=-1,即(-a)?a=-1,∴a=±1.

14.点P(a,3)到直线4x-3y+1=0的距离等于4,且在不等式2x+y<4表示的平面区域内,则P点的坐标为__________.

答案:(-3,3)

解析:因|4a-9+1|5=4,∴a=7,a=-3.

当a=7时,不满足2x+y<4(舍去),∴a=-3.

15.(2009?朝阳4月,12)已知动直线l平分圆C:(x-2)2+(y-1)2=1,则直线l与圆:x=3cosθ,y=3sinθ,(θ为参数)的位置关系是________.

答案:相交

解析:动直线l平分圆C:(x-2)2+(y-1)2=1,即圆心(2,1)在直线上,又圆O:x=3cosθ,y=3sinθ,即x2+y2=9,且22+12<9,(2,1)在圆O内,则直线l与圆O:

x=3cosθ,y=3sinθ,(θ为参数)的位置关系是相交,故填相交.

16.(2009?山东济南一模)若直线y=kx-2与圆x2+y2=2相交于P、Q两点,且∠POQ=120°(其中O为原点),k的值为________.

答案:±3

解析:由图可知,点P的坐标为(0,-2),

∠OPQ=30°,∴直线y=kx-2的倾斜角为60°或120°,∴k=±3.

三、解答题(本大题共6小题,共70分,解答应写出文字说明、演算步骤或证明过程。)

17.(本小题满分10分)求经过7x+8y=38及3x-2y=0的交点且在两坐标轴上截得的截距相等的直线方程.

解析:易得交点坐标为(2,3)

设所求直线为7x+8y-38+λ(3x-2y)=0,

即(7+3λ)x+(8-2λ)y-38=0,

令x=0,y=388-2λ,

令y=0,x=387+3λ,

由已知,388-2λ=387+3λ,

∴λ=15,即所求直线方程为x+y-5=0.

又直线方程不含直线3x-2y=0,而当直线过原点时,在两轴上的截距也相等,故3x-2y=0亦为所求.

18.(本小题满分12分)已知直线l经过点P(3,1),且被两平行直线l1;x+y+1=0和l2:x+y+6=0截得的线段之长为5,求直线l的方程.

分析一:如图,利用点斜式方程,分别与l1、l2联立,求得两交点A、B的坐标(用k表示),再利用|AB|=5可求出k的值,从而求得l的方程.

解析:解法一:若直线l的斜率不存在,则直线l的方程为x=3,此时与l1、l2的交点分别为A′(3,-4)或B′(3,-9),截得的线段AB的长|AB|=|-4+9|=5,符合题意.

若直线l的斜率存在,则设直线l的方程为y=k(x-3)+1.

解方程组y=k(x-3)+1,x+y+1=0,得

A(3k-2k+1,-4k-1k+1).

解方程组y=k(x-3)+1,x+y+6=0,得

B(3k-7k+1,-9k-1k+1).

由|AB|=5.

得(3k-2k+1-3k-7k+1)2+(-4k-1k+1+9k-1k+1)2=52.

解之,得k=0,直线方程为y=1.

综上可知,所求l的方程为x=3或y=1.

分析二:用l1、l2之间的距离及l与l1夹角的关系求解.

解法二:由题意,直线l1、l2之间的距离为d=|1-6|2=522,且直线L被平行直线l1、l2所截得的线段AB的长为5,设直线l与直线l1的夹角为θ,则sinθ=5225=22,故θ=45°.

由直线l1:x+y+1=0的倾斜角为135°,知直线l的倾斜角为0°或90°,又由直线l过点P(3,1),故直线l的方程为:

x=3或y=1.

分析三:设直线l1、l2与l分别相交于A(x1,y1),B(x2,y2),则通过求出y1-y2,x1-x2的值确定直线l的斜率(或倾斜角),从而求得直线l的方程.

解法三:设直线l与l1、l2分别相交A(x1,y1)、B(x2,y2),则x1+y1+1=0,x2+y2+6=0.

两式相减,得(x1-x2)+(y1-y2)=5. ①

又(x1-x2)2+(y1-y2)2=25. ②

联立①、②可得

x1-x2=5,y1-y2=0,或x1-x2=0,y1-y2=5.

由上可知,直线l的倾斜角分别为0°或90°.

故所求的直线方程为x=3或y=1.

19.(本小题满分12分)设圆上的点A(2,3)关于直线x+2y=0的对称点仍在圆上,且与直线x-y+1=0相交的弦长为22,求圆的方程.

解析:设所求圆的圆心为(a,b),半径为r,

∵点A(2,3)关于直线x+2y=0的对称点A′仍在这个圆上,

∴圆心(a,b)在直线x+2y=0上,

∴a+2b=0, ①

(2-a)2+(3-b)2=r2. ②

又直线x-y+1=0截圆所得的弦长为22,

∴r2-(a-b+12)2=(2)2 ③

解由方程①、②、③组成的方程组得:

b=-3,a=6,r2=52.或b=-7,a=14,r2=244,

∴所求圆的方程为

(x-6)2+(y+3)2=52或(x-14)2+(y+7)2=244.


高一数学知识点总结_圆与方程知识点

猜您喜欢

精彩推荐

粤ICP备16095388号-1